

What The Fuzz Is All About

Presented By

http://iam.akbarali.co.in

WHO IS THIS GUY

Akbar Ali

Programmer / Ops

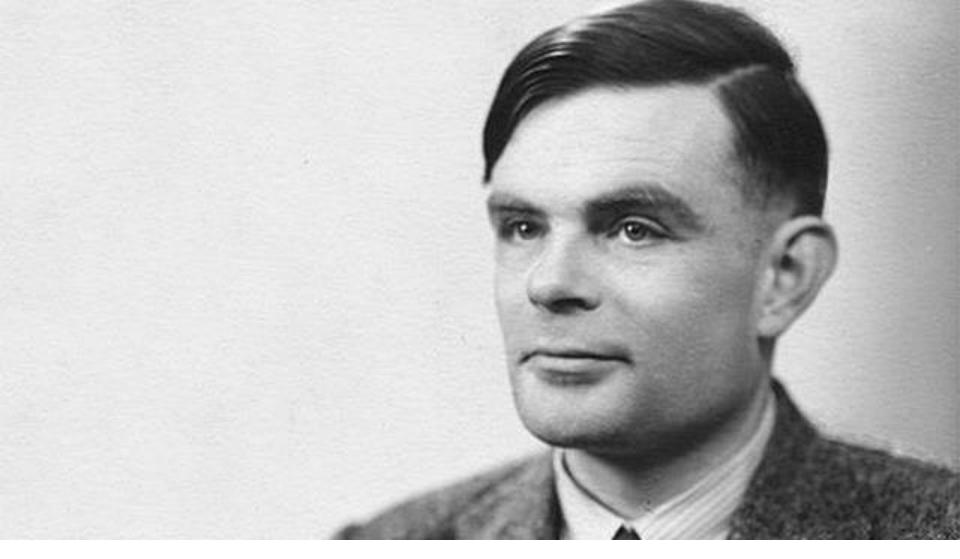
Mostly JS and Python

@AkbarHere

http://akbarali.co.in

INDEX

- # Derailing the hype train
- # Demystifying the buzzwords
- # Close look at hype cycle History of AI
- # Linear Regression
- # Loss Function
- # Gradient Descent
- # Understanding Neurons
- # Neural Network
- # Activation Function
- # Back Propagation
- # What's More



Alan Turing (23/06/12 – 07/06/54)

Father of theoretical computer science and artificial intelligence

Turing Test

The New York Times

July 8, 1958

The Navy revealed the embryo of an electronic computer today that it expects will be able to walk, talk, see, write, reproduce itself and be conscious of its existence.... Dr Frank Rosenblatt, a research psychologist at the Cornell Aeronautical Laboratory, Bufallo, said Perceptrons might be fired to the planets as mechanical space explorers

NOT JUST US

Volvo Drive Me

NOT JUST US

Volvo Drive Me

Asus ZenFone 5Z

AI charging

Al Display

Al Ringtone

The two terms are not synonymous no matter what marketing teams might think, and a slew of crappy "AI" products will soon ruin any remaining good will

The Most Confusing Term, AI

the term "artificial intelligence" is applied when a machine mimics "cognitive" functions that humans associate with other human minds such as "learning" and "problem solving".

The scope of AI is disputed: as machines become increasingly capable, tasks considered as requiring "intelligence" are often removed from the definition, a phenomenon known as the AI Effect, leading to the quip "AI is whatever hasn't been done yet."

COMPUTER BEATS HUMAN !!!

How many countries in Africa does the equator cross?

MORAVEC'S PARADOX

LINGUISTIC THEORY

>> 95% of our DNA matches with chimpanzees, so, what are the differences ?

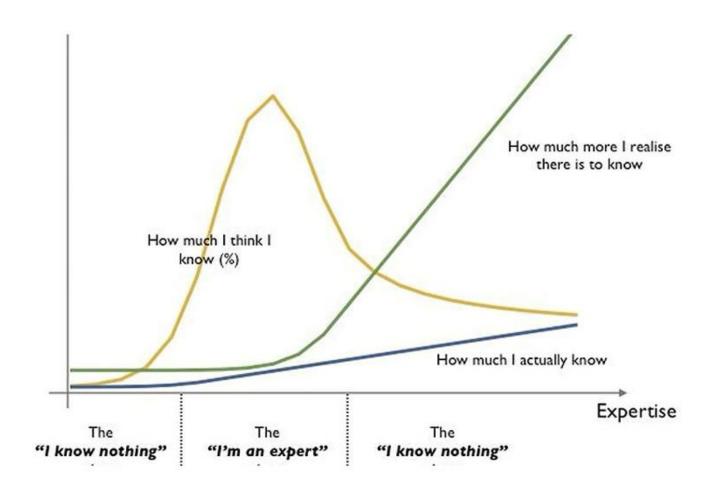
there is no other species known to date that can expressinfinite ideas (sentences) with a limited set of symbols (speech sounds and words)

>> Let you imagine things you never experienced

DRAWBACKS

- >> Artificial General Intelligence
- >> Lack of reasoning
- >> Big Data
- >> Supervised Data
- >> Hyper Parameter tuning
- >> Network Architecture
- >> ~ 100 1000 Trillian synapse in a human, 10 Billion for ANN
- >> Good reward function is hard

Neural Networks: Proceed with Caution



Artificial Intelligence

MP

Machine Learning

Computer Vision

History

Artificial Intelligence

BATA AWAINTIES

Deep Learning

Neural Networks

KNN

MP

Machine Learning

Computer Vision

LINEAR REGRESSION

TOURS OF RECKESSION

IK KEGKESSION SVM

Artificial Intelligence

BATA AWALYTIES

Deep Learning

Neural Networks

CNN

RNN

Reinforcement Learning

Machine Learning Regularization

Inverse Reinforcement Learning

MLP

Computer Vision

STM

LINEAR REGRESSION

SVM

GAN

Regression

Hidrigian

Artificial Intelligence

BATA ATRALYTIES

Activation Functions

Loss Function

Gradient Descend

Hyperparameters

LSTM

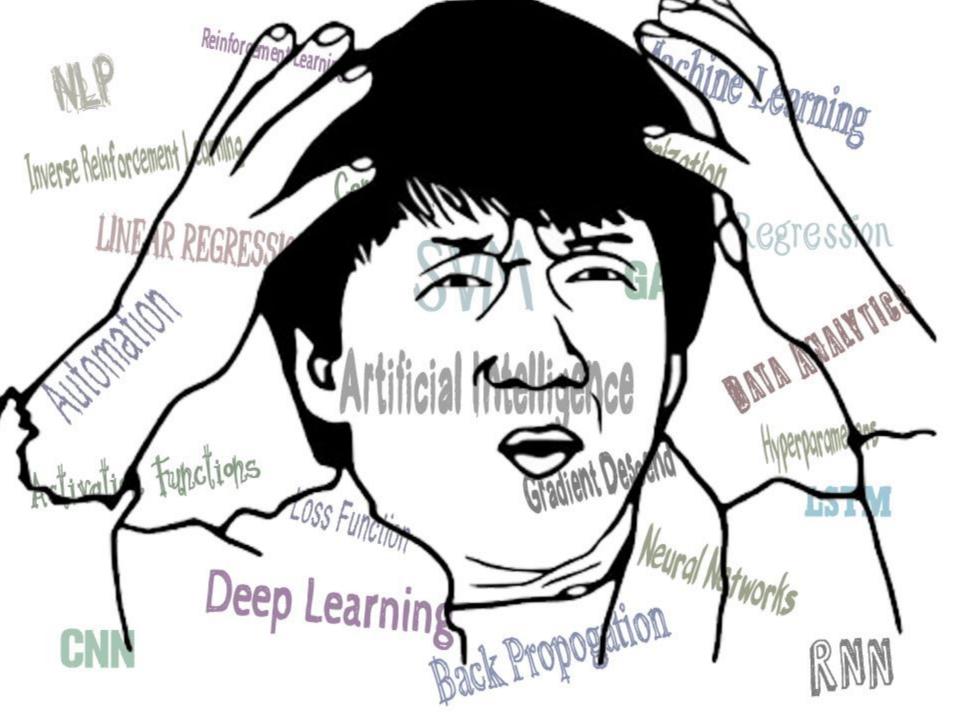
Deep Learning

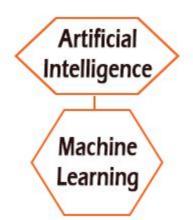
Back Propogation

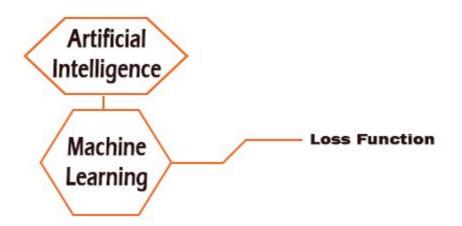
Neural Networks

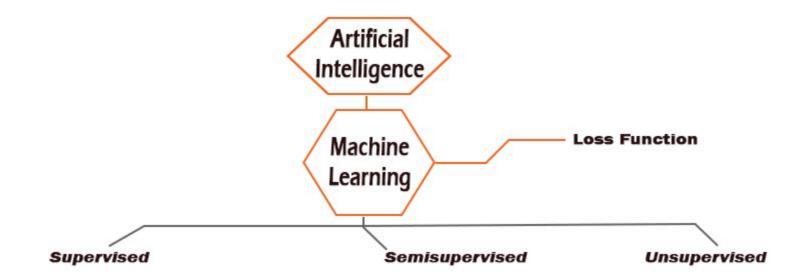
CNN

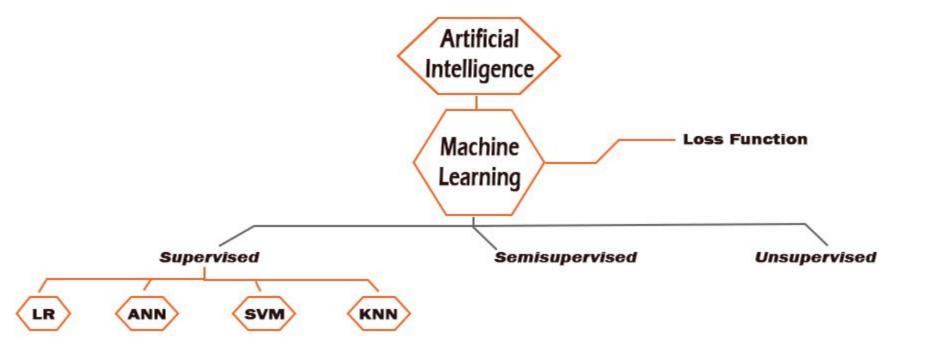
RNN

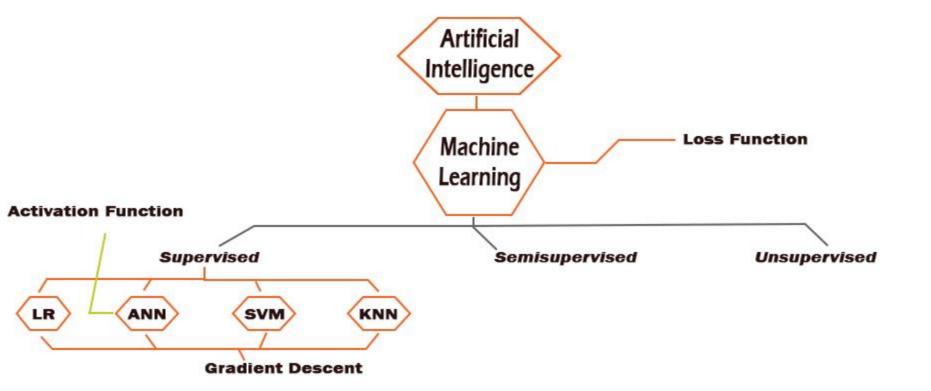


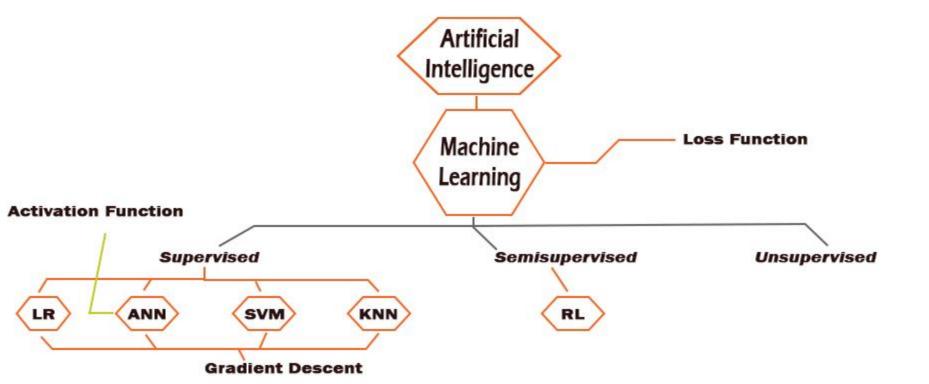


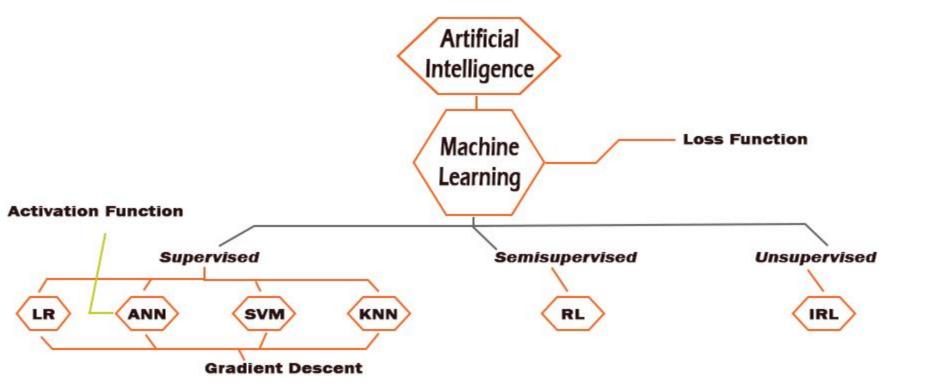


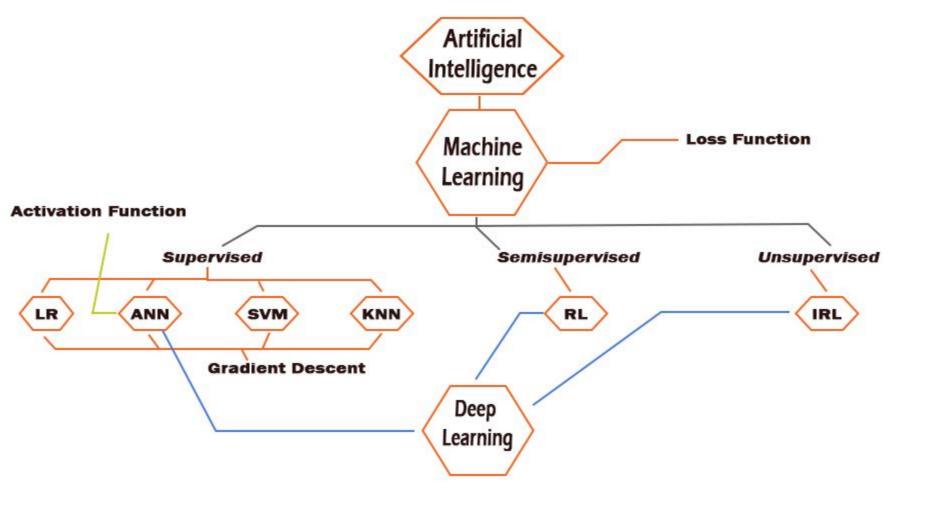


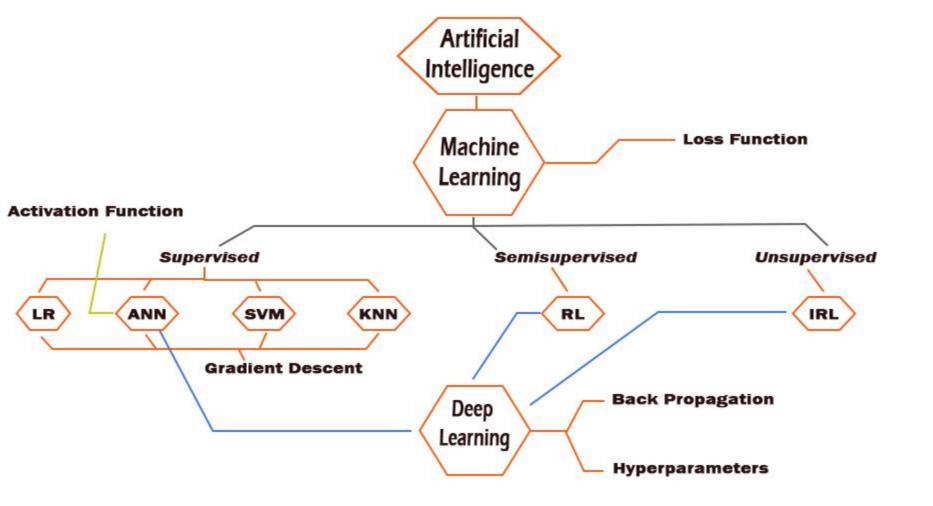


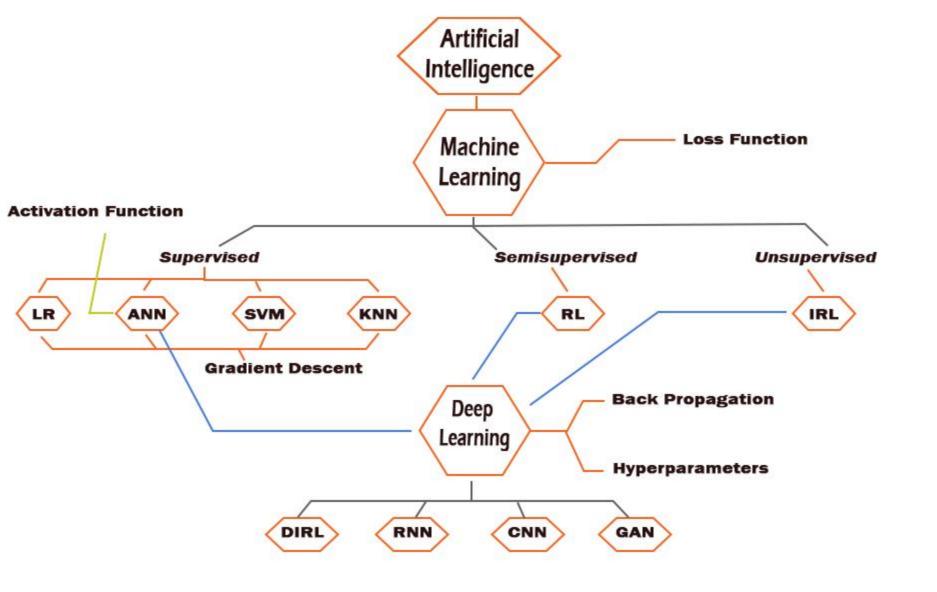


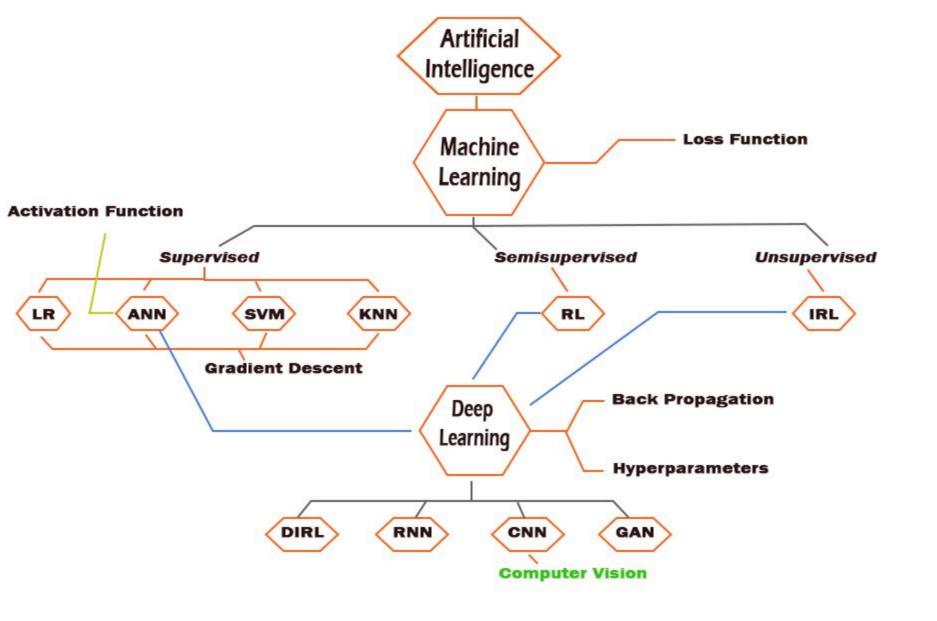


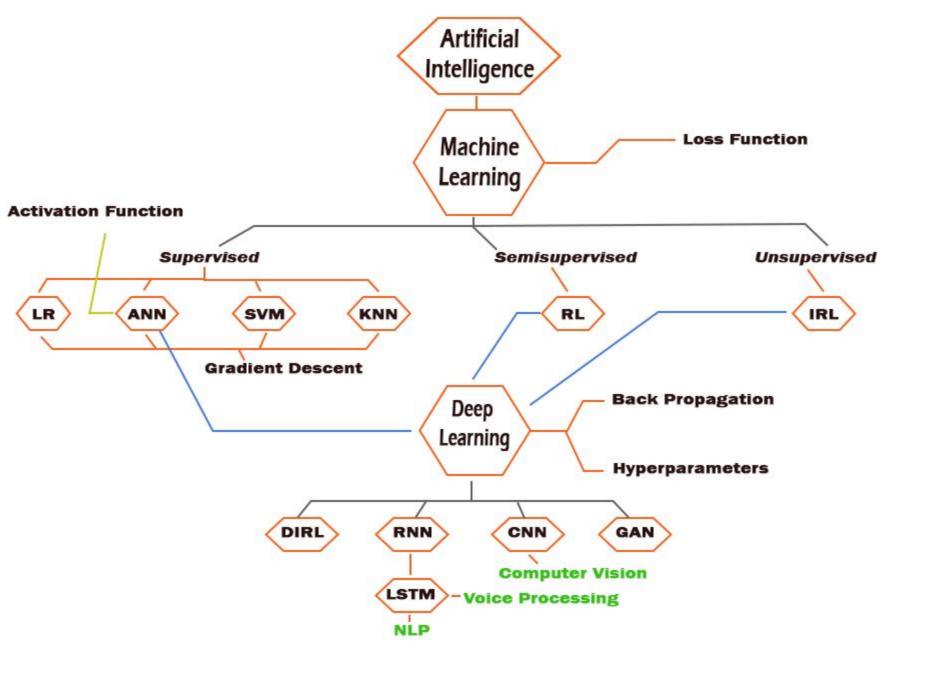


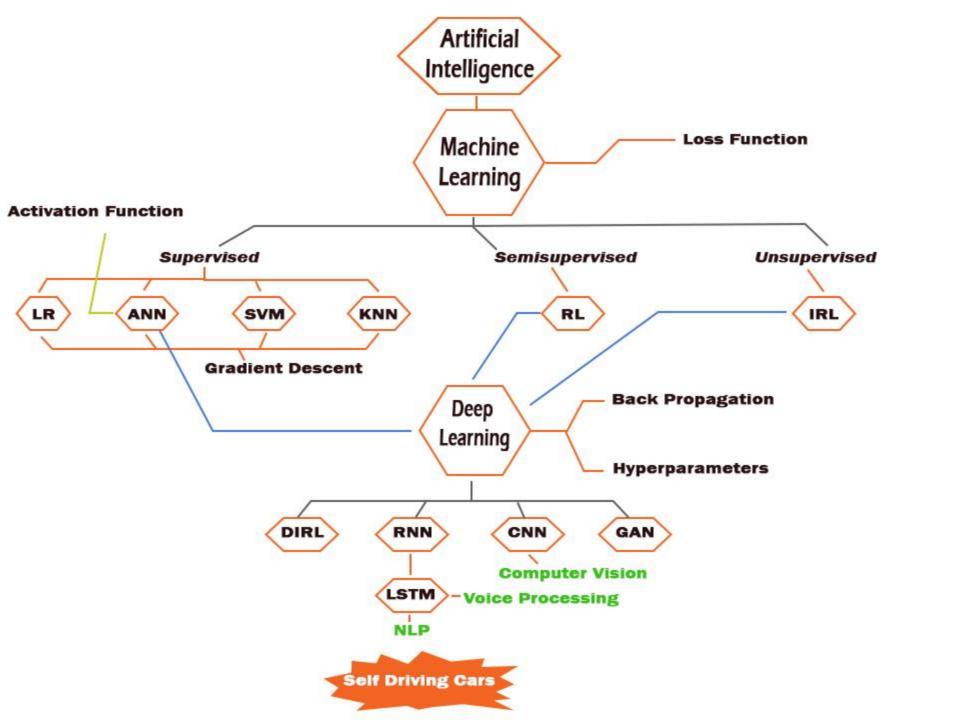


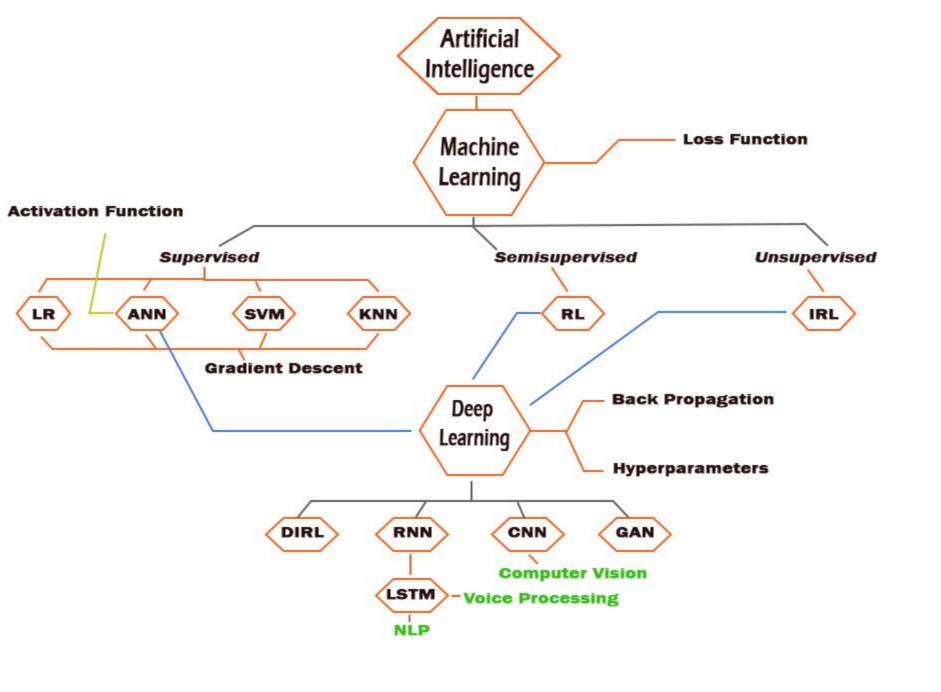




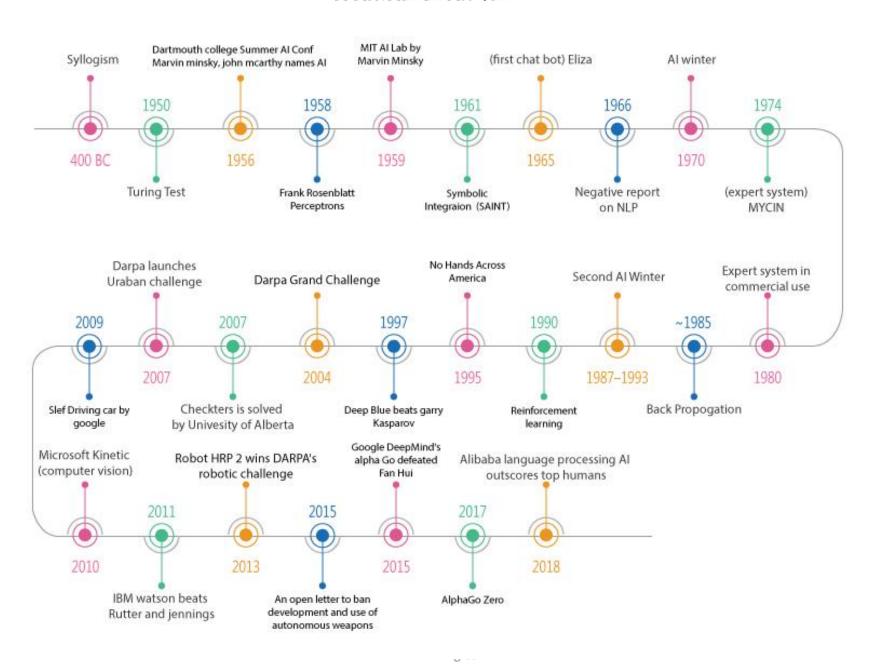






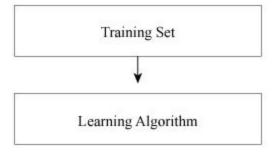


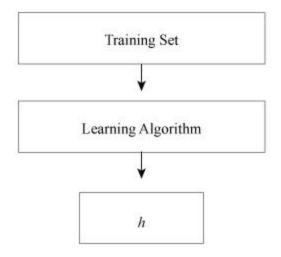
TIMELINE

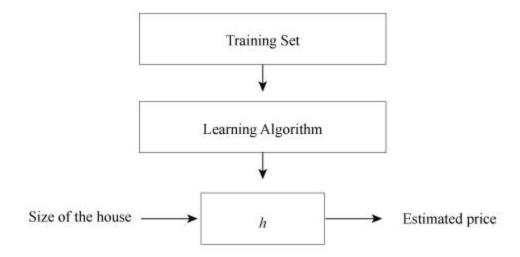


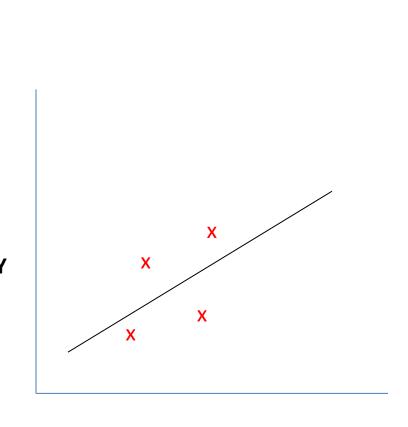
LINEAR REGRESSION

Training Set







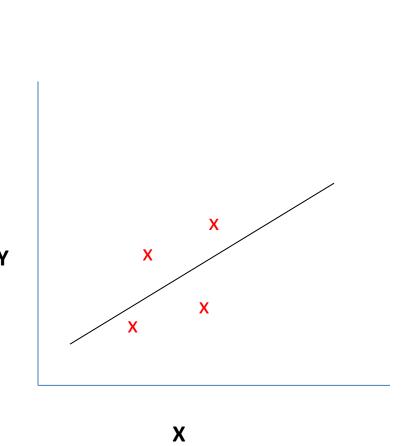


X

size	price			
2104	460			
1416	232			
1534	315			
852	178			

$$y' = a + bx$$

$$a = \frac{(\sum y)(\sum x^2) - (\sum x)(\sum xy)}{n(\sum x^2) - (\sum x)^2}$$
$$b = \frac{n(\sum xy) - (\sum x)(\sum y)}{n(\sum x^2) - (\sum x)^2}$$



size	price			
2104	460			
1416	232			
1534	315			
852	178			

$$h(x) = \Theta_0 + \Theta_1 x$$

Find Θ_0 and Θ_1 so that h(x) is close to y in the training example (x, y)

$$h(x)-y$$

$$\sum_{i=1}^{m} (h(x^{i})-y^{i})$$

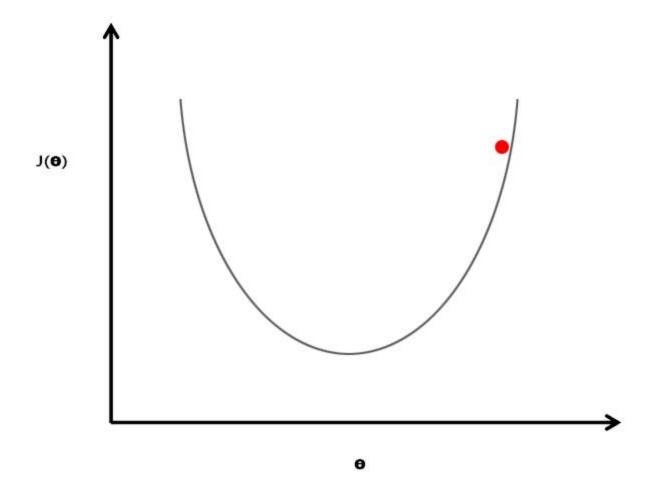
$$\frac{1}{m}\sum_{i=1}^{m}\left(h(\mathbf{x}^{i})-\mathbf{y}^{i}\right)$$

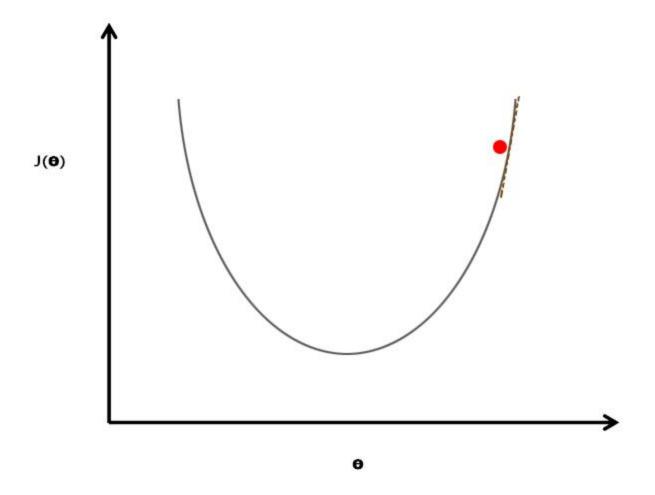
$$\frac{1}{m}\sum_{i=1}^{m} \left(h(x^{i})-y^{i}\right)^{2}$$

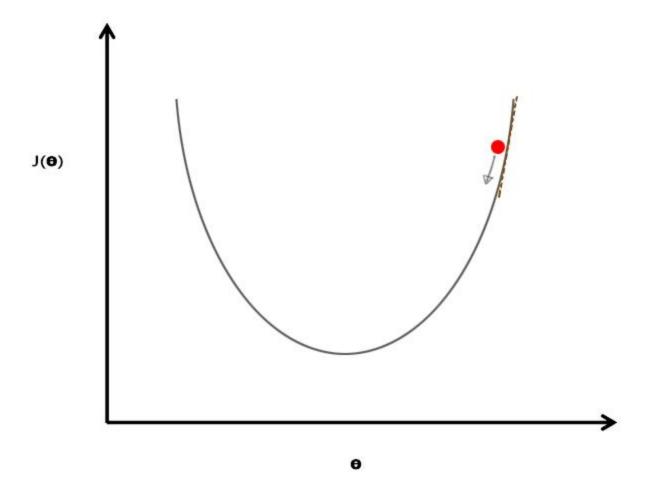
$$\frac{1}{2m} \sum_{i=1}^{m} (h(x^{i}) - y^{i})^{2}$$

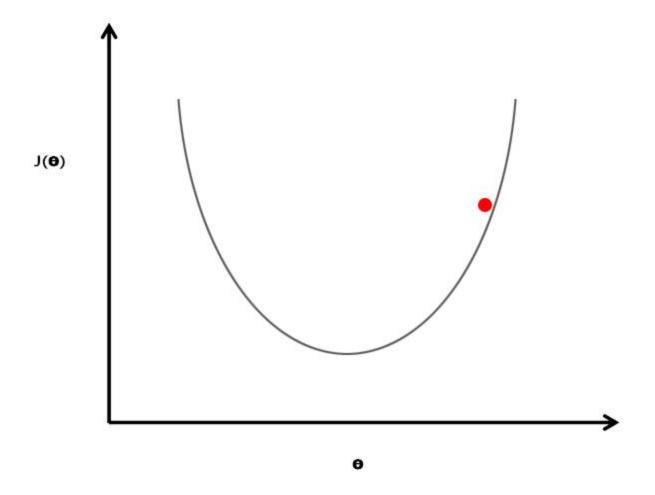
$$J(\theta_0, \theta_1)$$

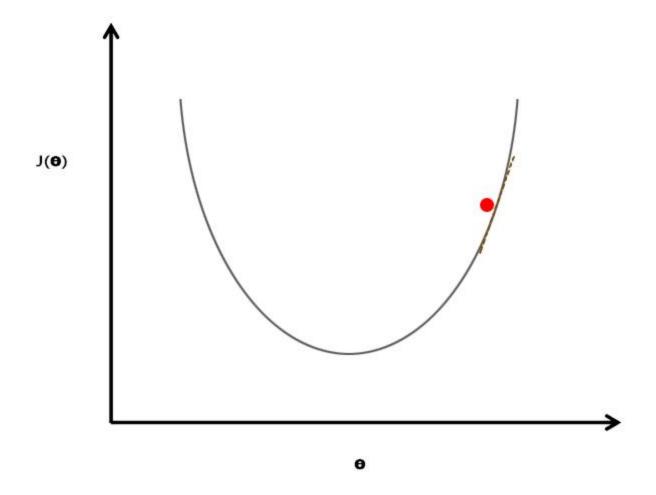
$$\frac{1}{2m} \sum_{i=1}^{m} (h(x^{i}) - y^{i})^{2}$$

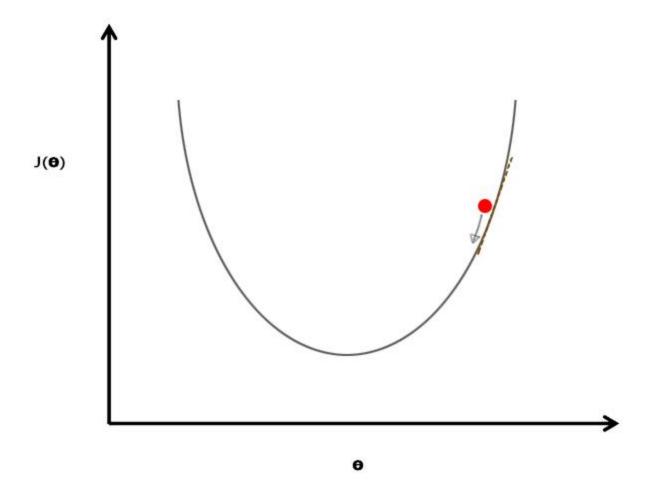


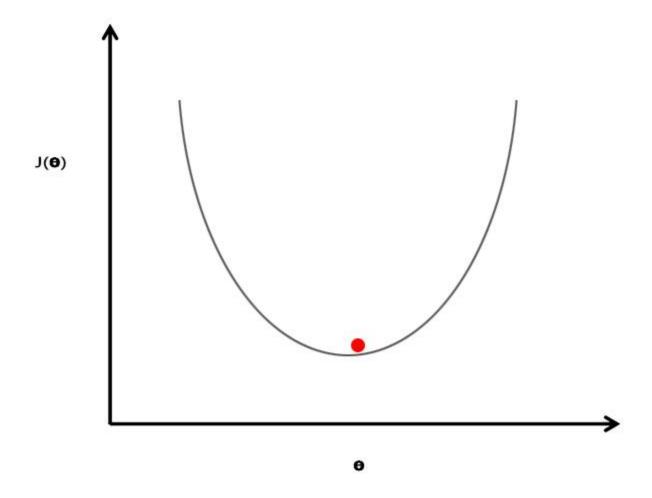












Repeat until converge {

$$\Theta \rightarrow \Theta - \alpha \frac{q\theta}{q} \gamma(\theta)$$

size	#Bedrooms	Years old	price		
2104	3	5	460		
1416	2	2	232		
1534	5	8	315		
852	4	1	178		

size	#Bedrooms	Years old	price	
2104	3	5	460	
1416	2	2	232	
1534	5	8	315	
852	4	1	178	
		X		

Г			St
	2104	3	5
	1416	2	2
	1534	5	8
	852	4	1
Ļ			% .

size	#Bedrooms	Years old	price
2104	3	5	460
1416	2	2	232
1534	5	8	315
852	4	1	178
		\mathbf{X}	Y
	2	104 3 5	460

2104 3 5 1416 2 2 1534 5 8 852 4 1

size		#Bedro	ooms Years old		price				
2104		3		5			460		
1416		2		2			232		
1534		5		8			315	315	
852		4	1			178			
	θ			3	X	3		Y	
2	2	3	2	104	3	5		460	
1	2	2	14	416	2	2		232	
8	6	5	15	534	5	8		315	
4	9	6	91	52	4	1		178	

size		#Be	drooms	Ye	ears old		price	e
2104		3		5	5		460	
1416	6 2 2		2			232		
1534		5		8			315	
852		4		1		178		
ϵ)		\mathbf{x}			Y		
2	2	3		2104	3	5		460
1	2	2		1416	2	2	_	232
8	6	5		1534	5	8		315
4	9	6	70 U U U U	852	4	1		178
		_				8 -		

Repeat until converge {

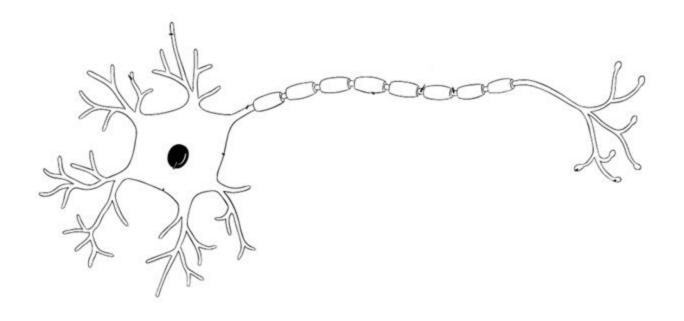
$$\Theta \rightarrow \Theta - \alpha \frac{q\theta}{q} \gamma(\theta)$$

Repeat until converge {

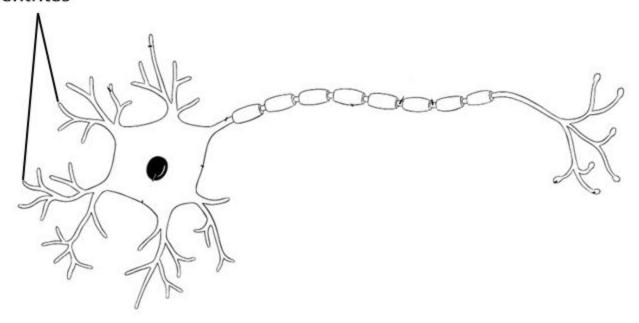
$$\theta^{i} \rightarrow \theta^{i} - \alpha \frac{\partial}{\partial \theta} \gamma(\theta)$$

}

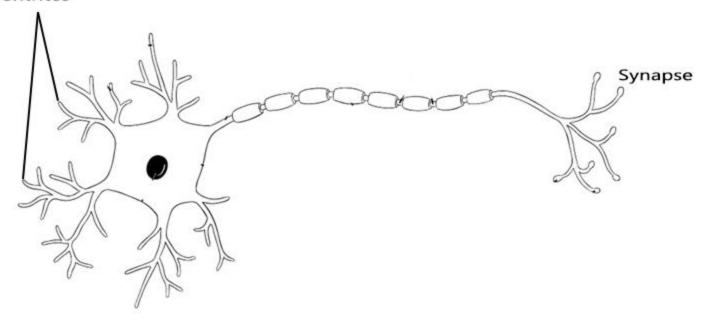
NEURONS



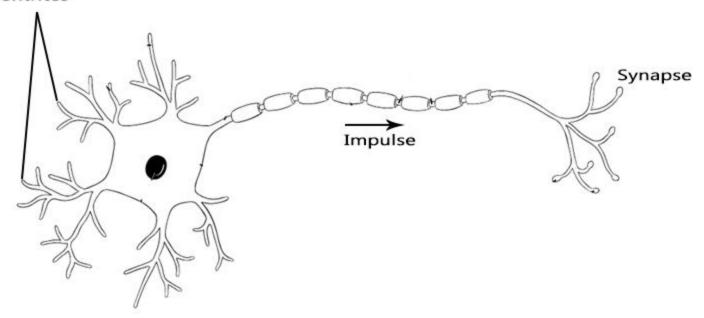
Dentrites



Dentrites



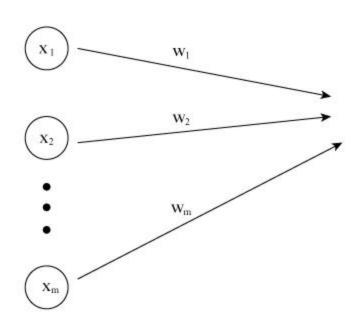
Dentrites

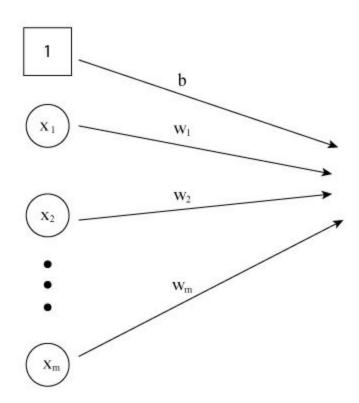


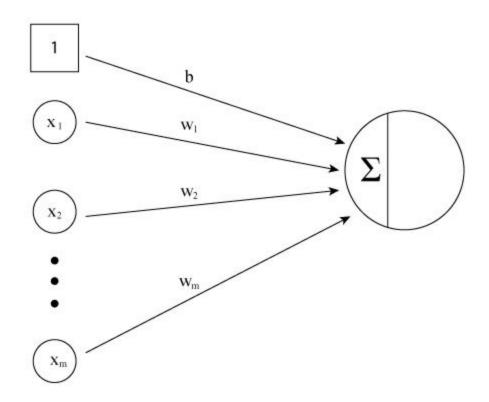
•

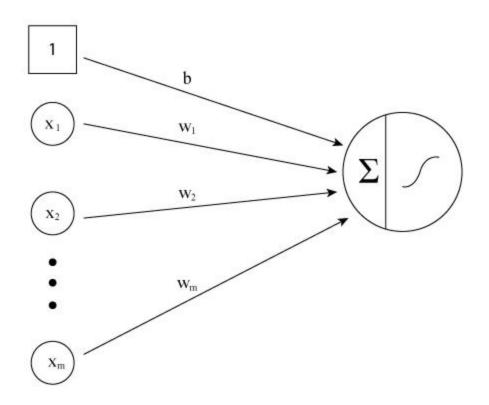
•

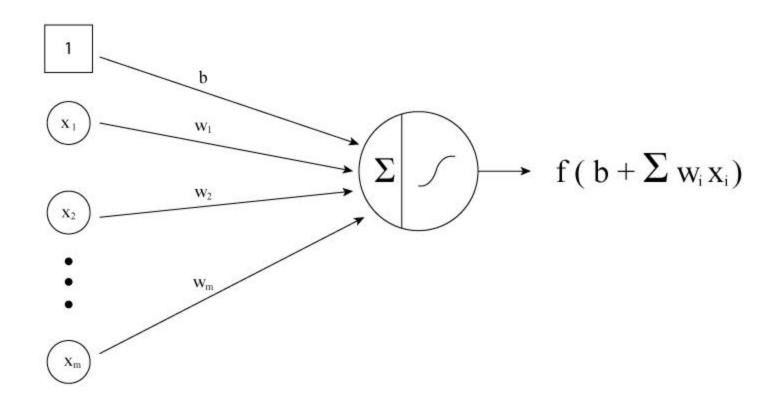
•



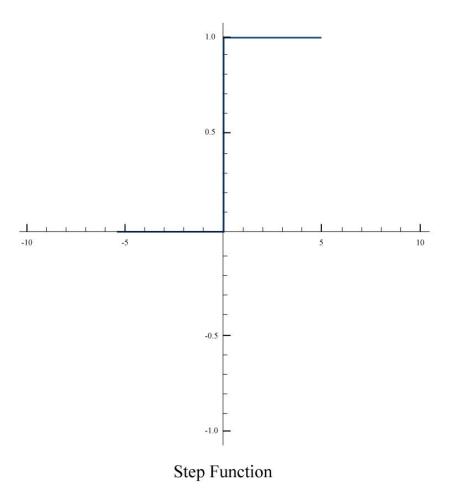






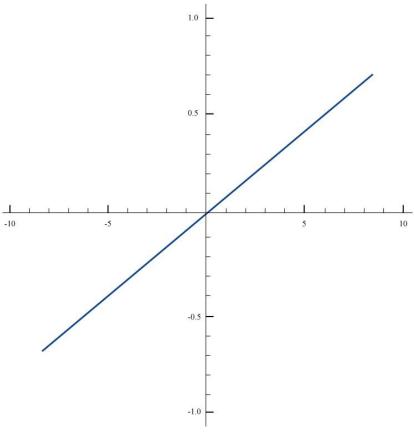


ACTIVATION FUNCTIONS



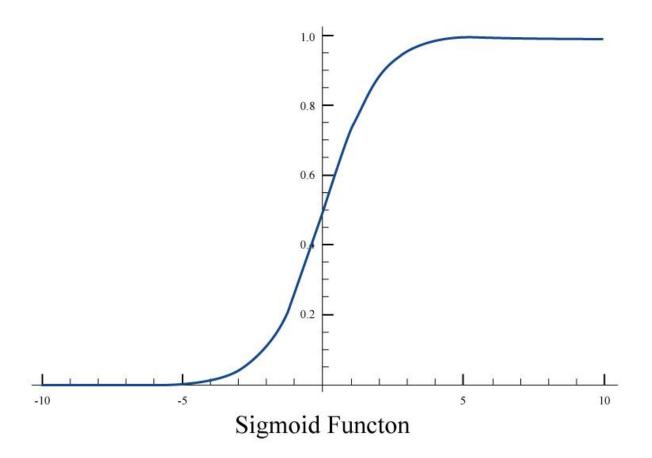
It can only turn on or off neurons, can't give an intensity

Non differential



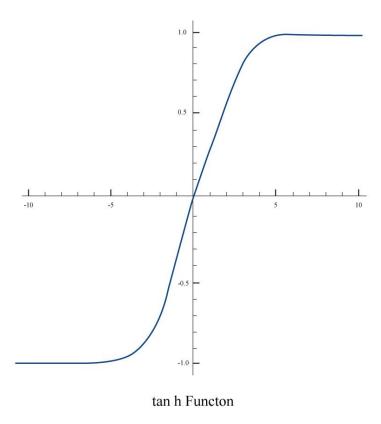
Linear Function

Differentiable and can forward intensity
Range is from negative infinity to positive infinity
Cannot differentiate non linear data

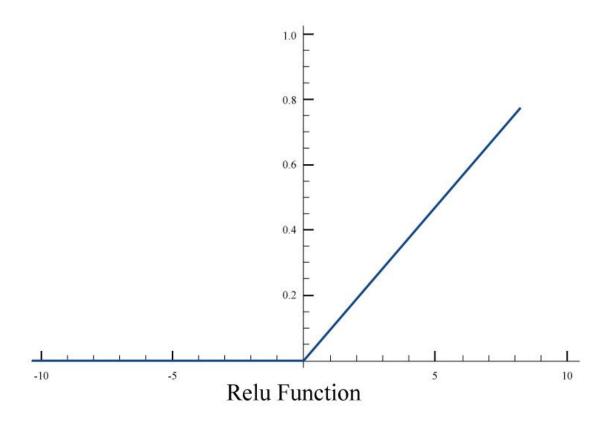


Differentiable and can forward intensity, Range between 1, 0 Small active range for gradients

Non zero centric

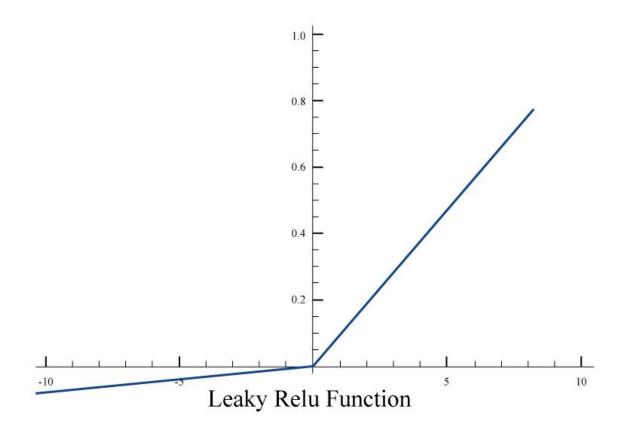


Differentiable and can forward intensity, Range between 1 , -1, Zero centric Small active range for gradients



Differentiable and can forward intensity, more active region for gradients Dead zone for gradients below 0

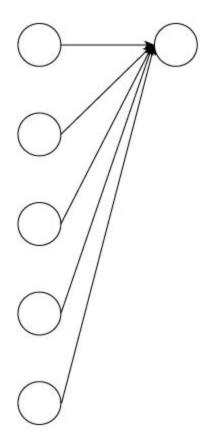
Range between 0, infinity

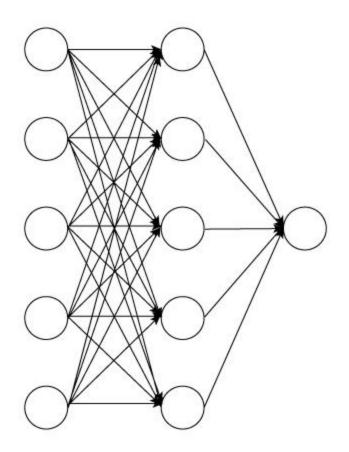


Differentiable and can forward intensity, more active region for gradients

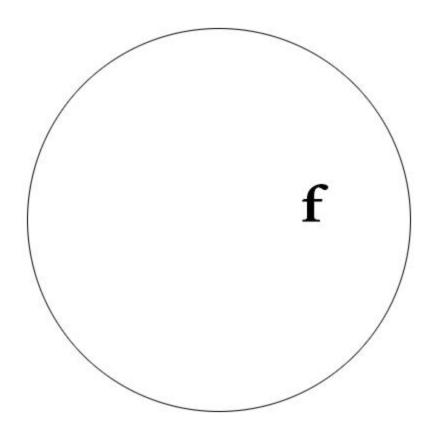
Range between 0, infinity

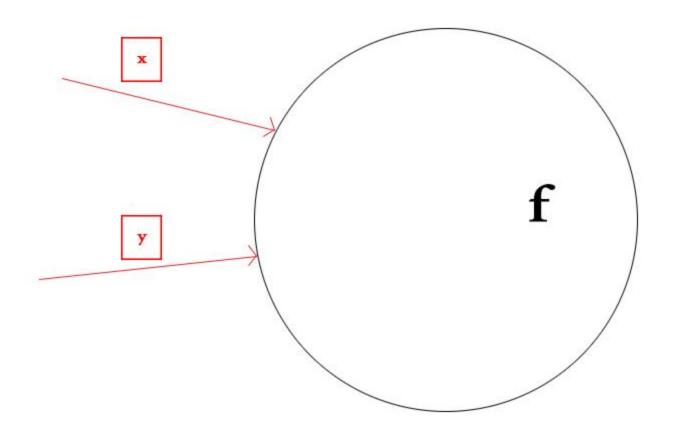
DEEP NEURAL NETWORK

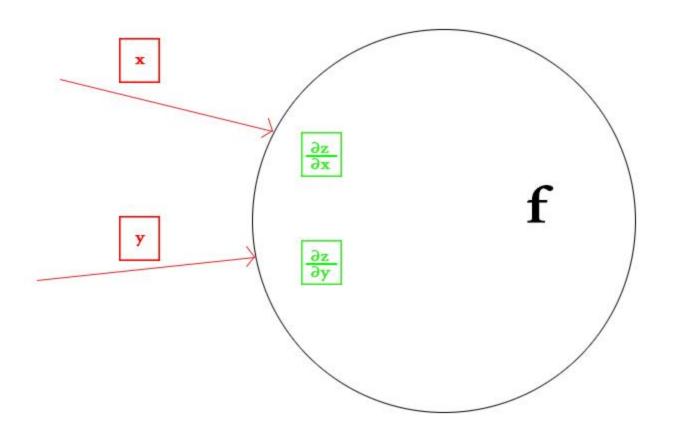


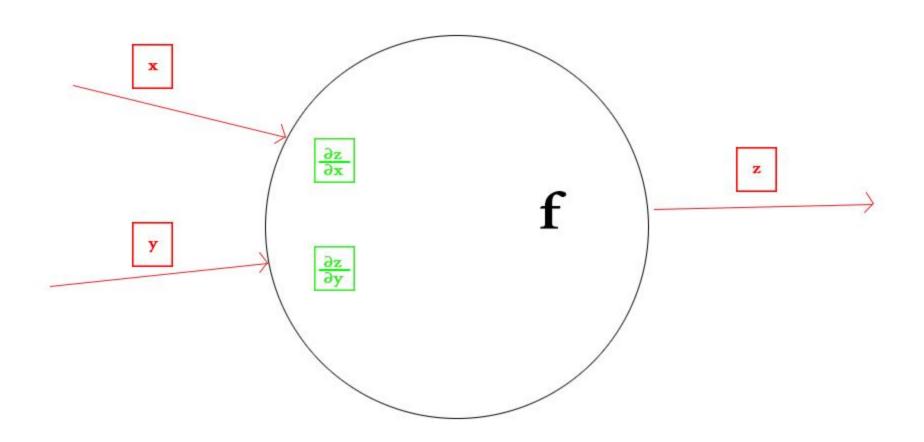


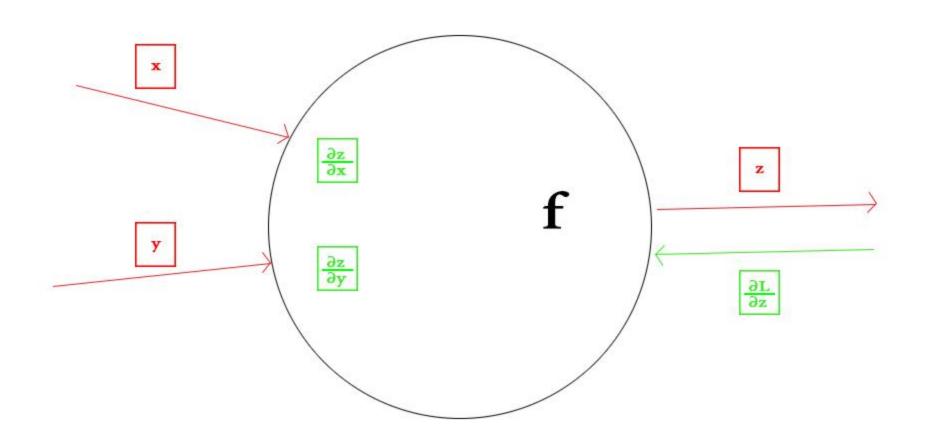
BACK PROPAGATION

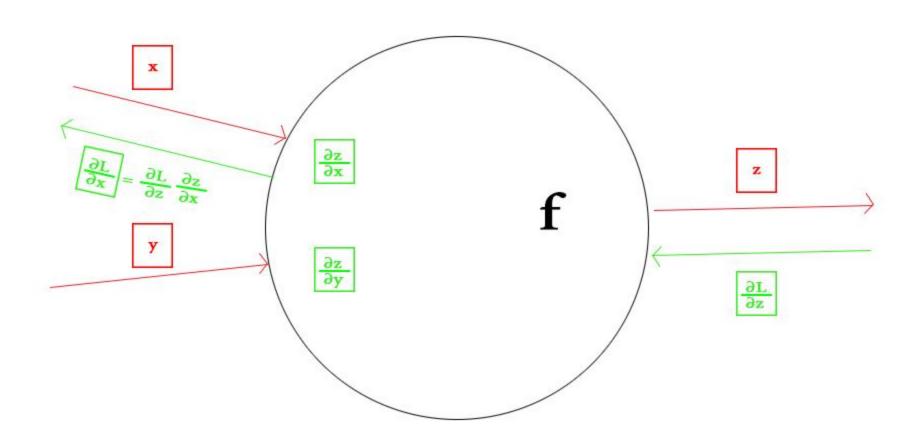


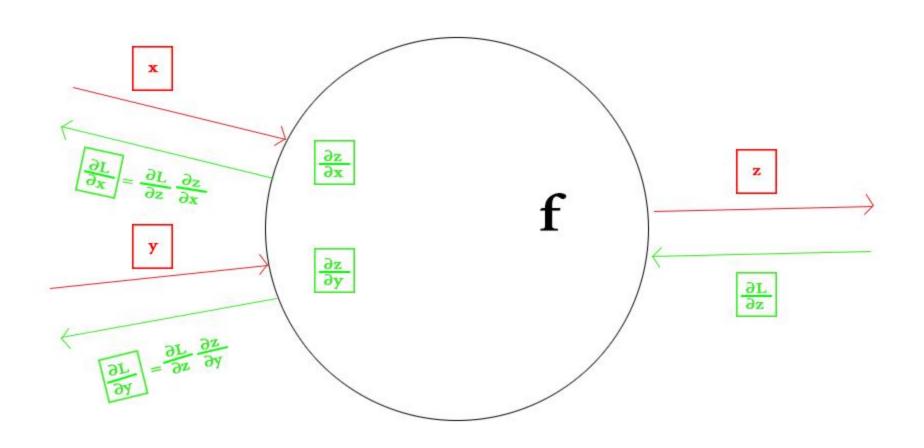










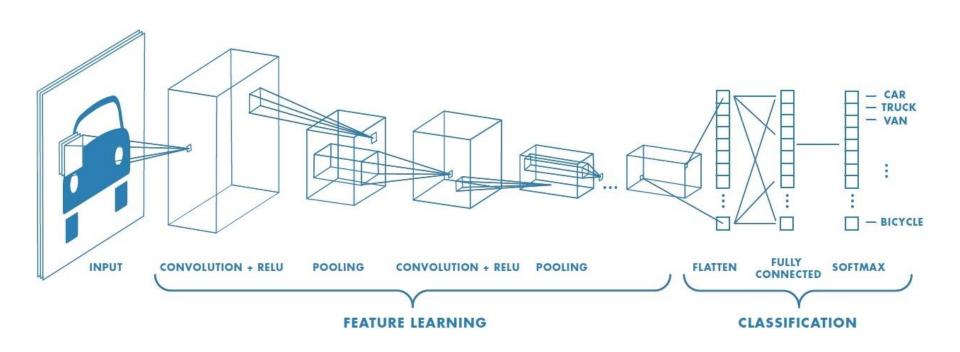


WHAT'S MORE

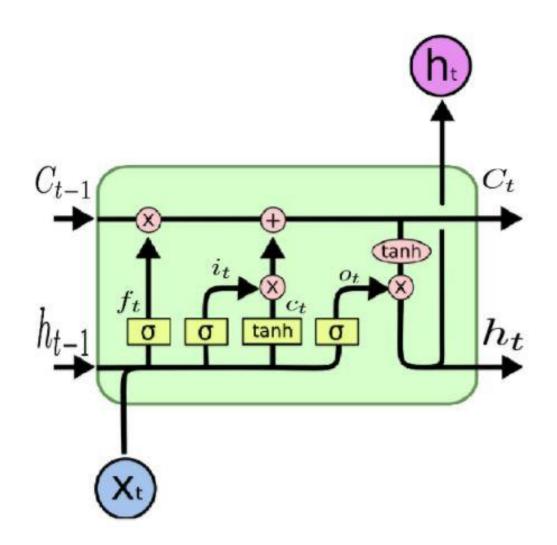
Regularization

- >> Data Preprocessing
- >> Weight Initialization
- >> Big Data
- >> Batch Normalization
- >> Regularization
- >> Drop out
- >> Validation aka babysitting
- >> Early stopping

CONVOLUTIONAL NEURAL NETWORKS

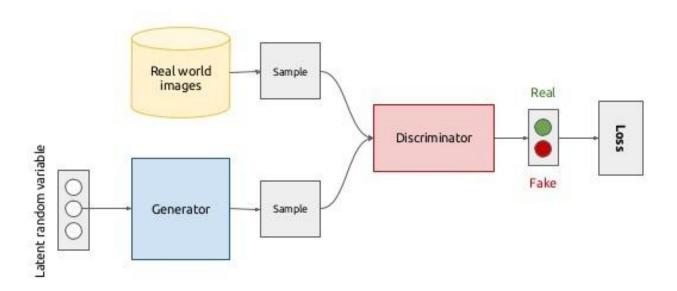


RECURRENT NEURAL NETWORKS



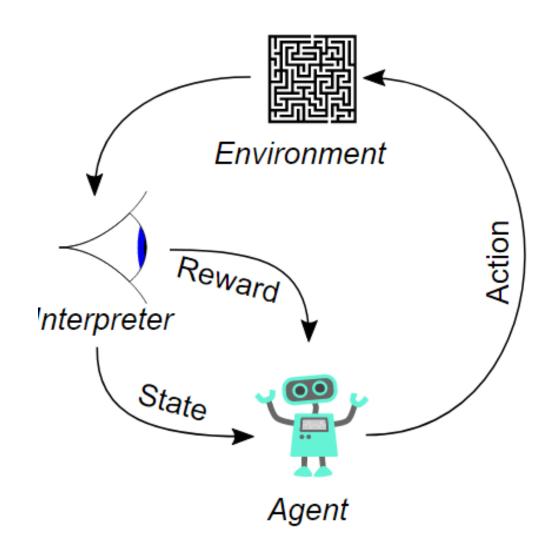
GENERATIVE MODELS

Generative adversarial networks (conceptual)

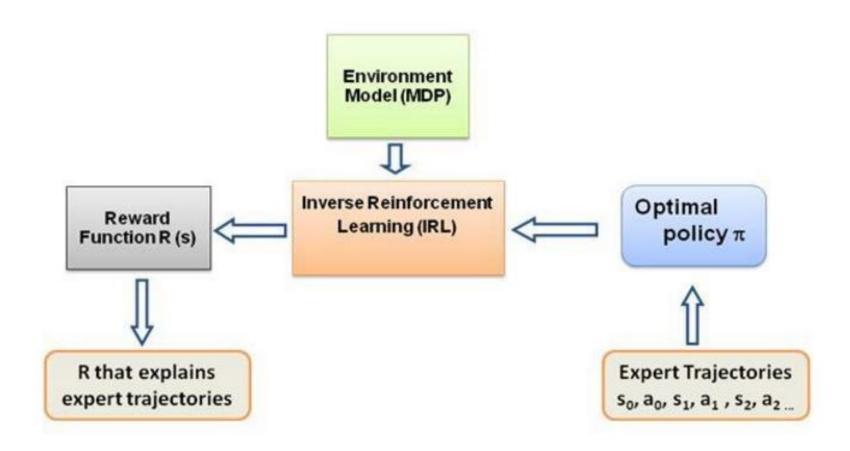


5

REINFORCEMENT LEARNING



INVERSE REINFORCEMENT LEARNING



INCREDIBLE STUFFS

AUTOMATIC IMAGE COLORIZATION

Combining Deep Convolutional Neural Networks with Markov Random Fields for Image Colorization

Colorization Results: Charlie Chaplin Goes to the Beach

VISUALLY INDICATED SOUND

PROGRESSIVE GROWING OF GAN

LEVEL 2 SELF DRIVING VEHICLES

